Search results

Search for "polymer nanoparticles" in Full Text gives 20 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. NIR light irradiation for 10 min can yield temperatures up to 61 °C in mesoporous PDA with a photoconversion efficiency of 26.7%. Despite the advantages, many of the polymer nanoparticles show strong photoluminescence and do not withstand long-term light irradiation. To overcome this challenge, hybrid
PDF
Album
Review
Published 04 Oct 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • , particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical
  • , nanoparticle concentration, surface functionalization, and the type of polymers that can be processed. Keywords: ethyl cellulose; nanoemulsions; nanomedicine; phase inversion composition (PIC) method; PLGA; polymer nanoparticles; polyuria; polyurethane; surfactants; Review 1 Introduction The field of
  • research on the fabrication of polymer nanoparticles from low-energy nanoemulsions, focusing on phase inversion composition. We particularly emphasize their biomedical applications as drug carriers. 2 Nanoemulsions Nanoemulsions are constituted by nanoscale droplets (20–200 nm) dispersed in a continuous
PDF
Album
Review
Published 13 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • targeting motifs, multifunctional and multistage nanomicelles and polymer nanoparticles, and nanostructured lipid nanocarriers, combined with precision oncology research to identify additional targetable biomarkers, have emerged. Some have been applied in the co-delivery of clinically relevant combinations
  • optimize the systems for different target sites, which is especially promising for nucleic acid delivery [96]. One example of multifunctional, multilayer, bioresponsive lipid polymer nanoparticles with a cleavable layer as a vessel for the co-delivery of erlotinib and bevacizumab was recently published by
PDF
Album
Review
Published 22 Feb 2023

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
PDF
Album
Review
Published 27 Oct 2022

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • ; Staphylococcus sp; Introduction Over the last several years, scientific advances in synthetic polymer materials resulted in a number of applications. With regard to this, special attention has been paid to polymer nanoparticles [1][2]. Polymer nanobeads have been used in various areas including electrochemistry
PDF
Album
Full Research Paper
Published 14 Apr 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • reference. Fourier-transform infrared spectroscopy (FTIR): The FTIR spectra of the free siRNA, blank polymer nanoparticles and the polyplex were recorded between 4000 and 400 cm−1 averaging 10 scans per run in attenuated total reflection mode (ATR) using a Fourier-transform infrared spectrometer (Spectrum
  • of PVI/siRNA; lane 8: blank. (B) Scanning electron micrograph of blank polymer nanoparticles. (C) Scanning electron micrograph of the polyplex formed with a polymer/siRNA ratio (v/v) of 4:1. (D) Transmission electron micrograph of the polyplex formed with a polymer/siRNA ratio (v/v) of 4:1. (A) FTIR
  • nanoparticles or polyplex. (A) Control; (B) blank polymer nanoparticles; (C) polyplex. The scale bars represent 100 μm. (A) Migration of A549 cells 48 h after treatment with free siRNA, blank polymer nanoparticles, polyplex with scrambled siRNA, and polyplex with VEGF siRNA. VEGF silencing slows down the
PDF
Album
Full Research Paper
Published 17 Feb 2020

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • such as nanoparticles or micelles with doxorubicin covalently bound to the polymer, nanoparticles produced by nanoprecipitation, micelles based on multi-arm star-shaped PLGA–PEG block copolymers, or nanopolymersomes [14][15][16][17][18]. Nanoparticle efficacy in cell culture Finally, the effects of
  • preparations, which display more sustained drug release, such as nanoparticles or micelles with doxorubicin covalently bound to the polymer, nanoparticles produced by nanoprecipitation, micelles based on multi-arm star-shaped PLGA–PEG block copolymers, or nanopolymersomes [14][15][16][17][18] may overcome such
  • 33.9 ± 0.5%, respectively). These loading efficiencies are in the range of those described for similar preparations, although higher drug loads have been described when using alternative PLGA-based formulations such as nanoparticles or micelles with doxorubicin covalently bound to the polymer
PDF
Album
Full Research Paper
Published 29 Oct 2019

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • -100. A typical COP-100 solution with 50 equiv EDA, showing a clear red color (Figure 3b), could be easily mixed and diluted with ethanol (Figure 3c). When the diluted polymer solution was analyzed with TEM, separated polymer nanoparticles were observed showing an average size of 115.7 ± 40.8 nm
  • (Figure 3d). The spherical shape of the polymer nanoparticles resulted from the split COP-100 granules covered with EDA. COP-100 precipitates with a lower amount of EDA, on the other hand, exhibited the aggregated form similarly to the original COP-100 (Figure 3e). After the addition of 8 equiv EDA, the
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • in order to establish the use of these biocompatible polymer nanoparticles to be used in human tissues for clinical applications. Experimental Materials All materials were purchased from Sigma-Aldrich, St Louis, USA and used without further purification. The chemicals used for GO synthesis are
PDF
Album
Full Research Paper
Published 18 Apr 2019

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • recently shown advancement in drug delivery applications. However, most of the studied biodegradable polymer nanoparticles resulted in acidic or degradation by-products, which may interfere in the drug activity [4] and normal homeostasis of the cell. The degradation of the drug-loaded polymer nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Closed polymer containers based on phenylboronic esters of resorcinarenes

  • Tatiana Yu. Sergeeva,
  • Rezeda K. Mukhitova,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Polina D. Klypina,
  • Albina Y. Ziganshina and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 1594–1601, doi:10.3762/bjnano.9.151

Graphical Abstract
  • within three hours of dialysis (Table 2, Figure 4). Conclusion Closed polymer nanoparticles p(SRA-B) were successfully prepared by cross-linking sulfonated resorcinarene (SRA) with phenylboronic acid (BA). p(SRA-B) exhibits good stability over a wide range of pH (6–12). In acidic media, p(SRA-B
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • Holešovičkách 2, 180 00 Prague, Czech Republic G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya 1, 153045 Ivanovo, Russia 10.3762/bjnano.8.200 Abstract This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via
  • plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a
  • of nanometers. Here and further in this Review, for simplicity, we shall use the designation “NPs” to describe all particles in this size range having in mind that objects of hundreds of nanometers are more accurately described as submicrometer-sized particles. Charge of plasma polymer nanoparticles
PDF
Album
Review
Published 25 Sep 2017

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • element contents of various samples were determined using an Elementar Vario EL III element analysis system. The morphology of the various polymer nanoparticles and carbon nanospheres was observed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The carbon
  • nanospheres were ultrasonically dispersed in acetone. The sample for TEM observation was prepared by placing a 5 μL of particle dispersion on a copper grid, which was coated with thin films of Formvar and carbon, and was allowed to dry in air. The polymer nanoparticles were stained by mixing an equal volume
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • are placed in the interstitial sites between the polymer nanoparticles, which hinders CNT aggregation in the film. Emulsion polymerization is the most frequently used waterborne polymerization process in industry [22][23][24][25][26]. However, especially for hybrid systems that contain an additional
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • internalization of Au@Fe3O4, Au@MnO and Fe3O4 particles (Figure 6). Caveolae-mediated uptake was blocked by the use of genistein, which was effectively demonstrated for anionic polystyrene nanoparticles in Hela cells [55]. Contrarily, Fernando et al. observed no changes for the internalization route of polymer
  • nanoparticles by macrophages after the treatment with genistein [56]. Interestingly, the application of chlorpromazine, selectively affecting clathrin-mediated endocytosis [57][58], led to an increased accumulation of Au@ Fe3O4 and Fe3O4 nanoparticles in HMEC-1 (Figure 6a and Figure 6c). After incubation of
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

  • Nils Bohmer and
  • Andreas Jordan

Beilstein J. Nanotechnol. 2015, 6, 167–176, doi:10.3762/bjnano.6.16

Graphical Abstract
  • of nanoparticles by HeLa cells is consistent with the literature. It was shown, that polyethyleneimine gold nanoparticles around 40 nm [33], gold nanoparticles of 4.5 nm [34] and conjugated polymer nanoparticles [36] are internalized through Caveolin dependent pathways. The same was observed for
PDF
Album
Full Research Paper
Published 14 Jan 2015

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • studying the intracellular degradation process, the polymer nanoparticles must be introduced into the cell and observed over a long period of time. PLLA nanoparticles are an ideal candidate for this purpose due to their potential to be taken up by the cell via endocytotic processes [16]. Furthermore
  • particles. Results and Discussion Following the uptake of polymer nanoparticles into cellular compartments and their subsequent residence, observation at various length scales is required, yielding different information. Moreover, for biodegradable nanoparticles, the verification of their decomposition
  • nanoparticles was chosen to be as high as possible. Accordingly, the amount of PLLA particles that are taken up by the cells must be maximized with a long incubation time. Because the TEM measurements cannot reflect the precise number of polymer nanoparticles contained within the cells, additional flow
PDF
Album
Full Research Paper
Published 29 Oct 2014

Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications

  • Li-wei Liu,
  • Si-yi Hu,
  • Ying Pan,
  • Jia-qi Zhang,
  • Yue-shu Feng and
  • Xi-he Zhang

Beilstein J. Nanotechnol. 2014, 5, 919–926, doi:10.3762/bjnano.5.105

Graphical Abstract
  • ][19]. There are many reports about the surface modification of QDs in the literature, for example, by functionalizing QDs with small molecules, e.g., sulfanylpropanoic acid, coating QDs with a silica shell, and encapsulating QDs within micelle polymer nanoparticles. Amongst the most-studied
PDF
Album
Full Research Paper
Published 27 Jun 2014

Ceria/silicon carbide core–shell materials prepared by miniemulsion technique

  • Lars Borchardt,
  • Martin Oschatz,
  • Robert Frind,
  • Emanuel Kockrick,
  • Martin R. Lohe,
  • Christoph P. Hauser,
  • Clemens K. Weiss,
  • Katharina Landfester,
  • Bernd Büchner and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 638–644, doi:10.3762/bjnano.2.67

Graphical Abstract
  • ; TPO catalytic; Introduction In recent years miniemulsions have been studied intensively [1][2][3]. Polymeric nanoparticles [1][2] from homo- or copolymers [3] as well as hybrid materials [3][4] such as magnetic [5][6][7][8] or silica/polymer nanoparticles [9][10] have been synthesized by this
PDF
Album
Video
Full Research Paper
Published 27 Sep 2011
Other Beilstein-Institut Open Science Activities